
MD-R144 593 HIERARCHICAL'MULTISENSOR IMAGE UNDERSTANDING(U) i/i
HONEYWELL SYSTEMS AND RESEARCH CENTER MINNEAPOLIS MN

A9 R GGARWAL JUL 84 AFOSR-TR-84-0639 F49620-83-C-8i34IUNCLSSIFIED F/6 9/4 NL

~EMEIEEMiEEEKh



IA Q

11111- 2

1111IL125 111 .4 111.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURtAU OF STANDARDS- I963-A



AkFOSR. TR.

HIERARCHICAL MULTISENSOR
IMAGE UNDERSTANDING

TECHNICAL REPORTI(

AFOSR F49620-83-C-0 134 *

" ANNUAL REPORT FOR PERIOD

< OCTOBER 1983 - SEPTEMBER 1984

JULY 1984

* S

Honeywell

SYSTEMS & RESEARCH CENTER
2600 RIDGWAY PARKWAY

MINNEAPOLIS. MINNESOTA 55413

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH_ 1,

AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE ko P

84 08 17 066



UNCLASSIFIED
S:URITY CLASSIFICATION OF THIS PAC%--

REPORT DOCUMENTATION PAGE
i. REPORT SECURITY CLASSIFICATION 11b. RESTRICTIVE MARKINGS

!JNC I.ASSTI ED___________________ ________

~SECURITY CLASSIFICATION AUTHORITY 3. DiSTRI BUTION/AVAI LABILITY OF REPORT

Approved for public release; distribution

h . ECLASSIFICATION DOWNGRADING SCHEDULE 
unlimited.

PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR -TR. n C"
aNAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

F(II applicable)
Honeywell, Inc. Air Force Office of Scientific Research

ic. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Honeywell Systems and Research Directorate of Mathematical & Inform~ation
2600 Ridgway Parkway, Minneapolis MRN 55413 Sciences, Bolling AFB DC 20332

Be. NAME OF FUNDING/SPONSORING B~b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION j(it applicable) £92-3C03

AFOSR NM! ___ __ __ __ __ __ __ __ __ __ __ __ __ __ __

3c. ADDRESS ICity. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

Bolling AFB DC 20332 E LE MENT NO. NO. NO. NO.

______________________________ 61102F 2304 A7
i 1. TITLE (Infciude S~eurity Clanification)

HIERARCHICAL MULTISENSOR IMAGE UNDERSTANDING _____

-2. PERSONAL AUTHORMI)

Raj K. AggarwalI
13&. T YPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., ay 15. PAGE COUNT

it.Vm t~k FROM l/7/83 To 30/6/84 JUL 84 54
1'6. SUPPLEMENTARY NOTATION

7.COSATI CODES _ 18. SUBJECT TERMS (Con tinue on reverse if necessary and identify by bloch number)

FIELD GROUP SUB. GR. Image processing; image under, anding; artificial

intllgece;scneanayvsis attributed graphs.Jk_
9. ABSTRACT (Continue an reverse ifneceUaary anid identify by block numberl

This report describes the researc-h results on Hoaeywell's Hierarchical Multisensor Image'

Uaders;tandiag program. Honeywell is developing a unif-ied framework for the different
hierarchical levels ol image processing such as segmentation, detection, classification,
and identification of outdoor scones and across different sensor modalities such as
millimeteiv wave, iunfra red, and visible. Current activities on the project are revicwed
under the following headings: (1) ' AI-.based generic image segmentation and object recogni-
tion; (2) evidence-confidence paradigms for image understanding; (3) hierarchical syrstems
theory for control structure,,; and (4) invariant methods in image understanding.j

OSRBTNIVIAIIYOF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION

'CLASSIFIED/UNLIMITED ~.SAME AS RPT ~2DTIC USERS 0 UNILASSll lcD

a. NAME OF RESPONSIBLE iNDIVIDtUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

Dr'. Robert N4. Buchal 1(202) 767- 4939 :1.1
at)FRM17. 3AREDITION OF I JAN 73 IS OBSOLETE. rrN'C AZZ' :L1D 0

84 08 1 7 066 SECURITY CLASSIFICATION OF THIS PAGE



t-O

p 0

Hierarchical Multi sensor

Image Understanding 0

Annual Report Accession For

NTI-GRA&I

1 October 1983 - 30 September 1984 DTIC TAB P 0
Unannounced 
Justification

Contract F49620-83-0-0134
By.

Distribution/ --
Honeywell Systems and Research Center Availability Codes 0

Avail and/or

Minneapolis, Minnesota 55413 Dist Special

A BSTRACT

This report describes the research results on Honeywell's Hierarchical 0

Multisensor Image Understanding program. Honeywell is developing a unified

framework for the different hierarchical levels of image processing such as

segmentation, detection, classification, and identification of outdoor scenes

and across different sensor modalities such as millimeter wave, infrared, and

visible. Current activities on the project are reviewed under the following

headings: (1) Al-based generic image segmentation and object recognition; (2)

evidence-confidene paradigms for image understanding; (3) hierarchical systems

theory for control structures; and (4) invariant methods in image L

understanding.
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1. INTRODUCTION

This project is concerned with the study of a formal methodology for

multisensor image understanding. It is being conducted under Contract

F49620-83-C-0134 (AFOSR) monitored by Dr. Robert Buchal. Dr. King-Sun Fu

and Mr. M. Eshera, both of Purdue University, are collaborating on some

aspects of gene'ric scene segmentation.

Conventionally, multisensor systems are treated as a set of domain

specific subsystems (each optimized for one sensor domain such as
infrared, visible or millimeter wave) that are integrated with each other

only at the final output stage of processing. Honeywell is developing a S

unified framework for the flow of information and control between

different hierarchical image processing levels (such as gradient, texture,

context, etc.) and aco different sensor modalities.
J I S

We are taking a multidisciplinary approach to the development of the

unified framework. We are studying perceptual and physical invariants,

developing and understanding of their mappings into different sensory

domains at different representational levels, and developing machine

intelligence techniques for image processing based on the invariants.

Previously, we had developed image pixel level concommittant processing

for simultaneous millimeter wave and infrared imagery and for simultaneous

laser intensity and range Imagery. This gave us some understanding of

Issues involved in multisensor image information integration. We also had

previously developed knowledge based feed-forward control for scene

segmentation in different infrared images with diverse characterstics.

We are now

(1) developing a functional model for the bidirectional(feedback and

feed forward) control of information flow partially based on human

visual and perceptual system.

(2) further analyzing and comparing image formation processes for

multisensor vision.

(3)' switching across different sensor modalities using physical scene

invariants based on two-dimensional normalization filters.

L. A



(4) Integrating the mode switching and level transition frameworks via

appropriate production-rule structure with loose coupling of the
hierarchical processing modules.

I 0

Thus far in the project, we

(1) have developed a successful context-independent scene

segmentation approach which, unlike conventional approaches, does
not depend on specific object models. 0

(2) have developed a dynamic spatto-temporal knowledge representation
method that provides the knowledge base for multisensor vision

control.
(3) have developed a hierarchical planner for control of information I 0

flow to automatically determine the optimum sequence of image
processing operations and parameter values, and

(4) are developing a novel evidence accrual paradigm based on graphs
with attributed lists as nodes and image processing operators as p -

arcs.

This report reviews activities on the project during the period 1 October

1983 - 30 September 1984. This work is covered under the headings of

segmentation and recognition; evidence accrual; control of information

flow; and invariant methods. The work is summarized here since it is
covered in greater detail in individual technical reports and conference
papers. (1, 2, 3, 4, ,6, 7, 8, 9, 10, and 11).

2. AI-BASED GENERIC IMAGE SEGMENTATION AND OBJECT RECOGNITION

2.1 Context Independent Segmentation Inference Engine (CISIE)

Current generation image understanding systems cannot perform machine

vision tasks in a wide variety of contexts (environments, conditions)

without parameter modification. We have demonstrated the feasibility of

autonomously processing digital imagery to discriminate regions which

correspond to components of objects or areas of background terrain.

Furthermore, the region discrimination was to be performed using only the

information content of the original image. Thus, the system could be

operated without restricting the context of input imagery. This is a

t~ 9



[* significant advance in the state of the art. Algorithms have been

* implemented in the Image research laboratory and their performance

measured on a database of tactical Forward Looking Infrared (FLIR) imager,

typical of that used to test target acquisition systems. 0

The key milestones were:

1. Development of a set of combining rules for image primitives such

as edges, bright blobs, and contours

2. Development of a consistent set of conflict resolution rules to

resolve region conflicts between different "combined" images.

3. Laboratory demonstration of a rule-based region discrimination

concept "

Technical Agnroach - The first stage of an image processing system

extracts image primitives such as edges# textures, and contours. Our

approach is to apply rules which discriminate the structural regions in S

the original scenes based on the spatial coincidence of the various image

primitives. These rules depend only on the primitives derived from the

image, not on knowledge of expected scene content (e.g., tanks or road).

Thus, the second stage of CISIE combines a set of image primitives to

yield a single labeled image. The third and final stage applies a set

of conflict resolution rules to a set of labeled images, each of which has

been produced by processing the same image through different combining

procedures. Conflict reolution yields a region discriminated image. The

approach is illustrated in Figure 1.

Key Accom1lishmentl - We have succeeded in demonstrating the feasibilty of

our technical approach for CISIE. Reasonable region discrimination was

performed on FLR imagery whose content and image quality varied widely,

without the use of contextual information such as knowledge of scene

objects or range to ground.
- S

Milestone Soecific Results

o Milestone 1-Eleven processes for combining image primitives were

considered. Three combining processes were rejected because of

expense of implementation. We experimented with the other eight.

Four of these proved to require context-based information in order

to perform reasonable region discrimination. The remaining four
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combining processes were a homogeneity operator which finds

regions of little intensity change, an inhomogeneity operator

which finds coarse boundaries, Imaging Sensor Autoprocessor's

(ISA) texture boundary locator which finds changes in texture, and I S

ISA's prototype similarity transformation which finds areas of

common texture. Figure 2B shows the results of these four

operators on the original FLIR image pictured in Figure 2A. These

procedures define the combination of primitives specified in 0

milestone 1. Note that a procedural (algorithm) rather than

declarative (rule-based) implementation was chosen because of the

high computational overhead in pixel-level rule-based decisions.
I S

Each of the four combinations of primitives results in an

(possibly different) initial discrimination of the image into

significant areas. This results in four labeled images.

o Milestone 2-A set of heuristic rules codifying the behavior of

each of the operators, both individually and relative to each

other, was used to formulate heuristics for conflict resolution

between area discriminations. Each area in each of the labeled .

images was viewed as a characteristic (i.e., "on-off") function in

order to achieve a novel, real-time implementation of the conflict

resolution rules. Each pixel in each labeled image is labeled

"on" if it is part of a region, and "off" if it is part of a

boundary which separates regions. Thus each labeled image is

binarized. The four binarized labeled Images are put in adjacent

bit planes in image memory, forming a new Four-bit image. Now the

heuristic rules are coded Into a look-up table mapping the

four-bit image to a binary image. This performs conflict

resolution ir real time. The results of conflict resolution are

shown in Figure 2C.

o Milestone 3-The CISIE approach was tested on eight digital FLIR

images which ranged in complexity from single isolated targets in

a relatively homogeneous field to highly cluttered imagery of

power plants and general terrain. Reasonable context-free region

discrimination was demonstrated. The process is illustrated in

Figure 2 on a FLIR Image of a power plant.

S



In addition to the research being conducted at Honeywell under this

contract, world known Professor King-Sun Fu and his student Mr. Mohamed

Eshera, both from Electrical Engineering Department at Purdue University,

are also involved in investigating generic context independent image

segmentation via Attributed Relational Graphs (ARG). Further details are

contained in (12, 13).

2.2 Al-based Feedback Reseogmentation 0

We have found that in general, an image cannot be totally segmented in a

single pass of one segmentor. Better segmentation results when the image

is first segmented at a lower resolution Into a few regions. These 0

regions are then in turn segmented into smaller regions. This process

continues until the image has been segmented into homogeneous regions.

This process can be represented as a tree where each node is a region.

Branches form a node show it being made up of smaller regions. The head ,

node of the tree is the entire image are leaf nodes are the smallest

elementry regions that the image is made up of. The size of these

smallest regions, and therefore the resolution of the segmentation depends

on the size and type of the objects we re looking for in the image. This .

means that in an image understanding system even the image segmentation

needs to be driven by higher level information such as range and the

system goals.

At each node in the segmentation tree we have many different segmentation

operators to choose from. The choice of an operator to use is based on
knowledge about the sensor, the goals of the system at a given time, and

knowledge about the behavior of the different operators on different input

conditions. It is also possible to choose more than one operator at a

given node. This creates parallel branches in the tree and multiple

representations for a region. These multiple representations give more

information about the region that can be used when classifying the region.

Two examples are described of how this segmentation tree is created. To

keep the examples simple only two different operators were used.

The first example Is a FUR image of a power plant. Figure 3 shows the

segmentation tree for this image. The image was first preprocessed to do

noise cleaning. The type of preprocessing used depends on the type of

sensor and on actual measuremnts from the orginal image. Operator 1



yielded a poor segmentation while operator 2 separated the image into good

regions. These regions were then cut out of the original preprocessed

image and segmented further using the two operators. The numbers In the

tree nodes correspond to the picture number. See pictures 1-10. 0

Our second segmentation example shows a FLIR image of a multi-lane highway

with vehicles on It. The segmentation tree for this image is shown in
Figure 4. After preprocessing, the image was segmented at a low 6

resolution to find the general regions of interest shown in picture 13.
Picture 5 shows one of these regions cut out and picture 6 shows the

segmentation of this region at a higher resolution. The other side of the

segmentation tree shows the same type of processing on different regions

of interest found by operator 2. See pictures 11-26.

2.3 Dynamic Scene Analysis Inference Engine (DSA)

Conventional image processing techniques deal mainly with the detection,

extraction and recognition of objects, often by operating in a local area

around the target. They fall short of utilizing spatial, temporal,

relational and in general global information available In the scene. p.

To demonstrate the existence of this information in a dynamically changing

scene and to appreciate the benefits to scene anlysis, we have synthesized

a sequence of Frames 1 through 6, on our SYMBOLICS 3600 LISP machine. L *

For instance Frames I and 2 suggest that the three tanks will cross the

bridge and the segmentor operators and parameters (edge operators,

background estimators, thresholds, etc.) should be chosen according to the

bridge contrast, texture, noise, etc. However, Frames 5 and 6 strongly

indicate that the tank convoy Is turning upstream and therefore the

segmentor should be directed for tanks in terrain segmentation. This
results in more robust target segmentation and better scene understanding, L @

as it can "reasonably" be expected that the second and third tank will

follow the fist tank.

DSA is designed to exploit the synergistic benefits of these aspects in

scene understanding through a combination of reasoning and inferencing

techniques. The reasoning process is modeled after the expert's

• 9



sequential steps in understanding a scene from low to high level entities,
through the representation of operative knowledge by a frune/ production
rule structure. The inferencing is designed to enhance the robust users
of the system by handling incomplete information, requesting missing
information and identifying incorrect information. This could for
instance correspond to lowering the thresholds to search for a "suspect"
road that the initial segmentation missed. The system also includes query
and explanation facilities for the man-In-the-loop mode.

3. EVIDENCE-CONFIDENCE PARADIGMS AND INFORMATION FUSION

In a distributed sensor environment symbolic information fusion is the
integration of partial knowledge obtained from each sensor to arrive at a
complete sensor-derived representation. It uses model-based
representation of targets stored in the knowledge base and is guided by an
inference engine In the accrual of evidence and matching. The flow of 0

information during symbolic information fusion is depicted in Figure 5.0.
The outcome of the symbolic information fusion is the full Identification

of objects in the scene.

The inference engine performs the reasoning process that involves the

matching of two or more representations to Identify their differences and

similarities and also updates the confidence measures of the different
possible targets and their components. These two functions are

accomplished by a semantic net comparator and an evidence accrual module.

Identifying the best match between the sensor-derived representation and
the model-based representation previously stored in the knowledge base
provides the following:

0 Object recognition - identifies the object type from the sensor

derived representation.

o Directed rederivation of target representation - the inference

engine is used to cue rederivation of the sensor derived

representation so as to improve the level of confidence in the

object recognition.



o Occlusion prediction - postulates a partial sensor derived

representation to predict missing or occluded components. This

enhances the recognition of occluded objects.

Matching tree data structures Is generally carried out through classical

search methods and hypothesize-test paradigms. Classical search methods

include depth first, breadth first and A* optimal search; these methods

are well documented in t143. The hypothesize-test paradigm can be .

performed in either forward chaining or backward chaining modes. The

forward chaining is also called data driven or bottom-up and the backward

chaining is called the event driven, or top down.

As an example consider a particular target such as a tank. In forward

chaining, components of the sensor derived representation are matched with

the model-derived representation trunk, tread, and engine. If the match

succeeds, then the componets are grouped and named body. Turret and S

barrel are then identifled. Then the sensor-derived representation is a

tank Is true, or vice versa. Heuristics can be applied to facilitate a

fast match. Honeywell is investigating both approaches.

The matching mechanism first constructs a network fragment, representing a,

sought-for-object, e.g., a tank, and then matches the network fragment
against the network data base to see if such an object exists. For
example, if a tank is sought, the fragment network depicted in Figure 6
will be generated and the components will be matched. The matches wil

make Inferences to create extended network structures, e.g., trunk,

engine, and tread during the matching process.

The criteria in evaluating the matching technique we are developing are:

1. Capability to recognize objects and reject clutter with partial

i nformati on.

-_ S
2. Capability to provide resegmentation direction.

3. Capability to determine occlusion.
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In any matching technique, a similarity measure is used to determine the

best match between the sensor-derived representation and one the

model-derived representation. Commonly used similarity measures are
Euclidian distance, mean square error, and Bayesian probabilities. These S

similarity measures work well in statistical pattern recognition, but

their applicability in partial knowledge matching is limited. In
artificial intelligence research, inexact reasoning has proved its

usefullness in medical diagnosis, chemical analysis, and natural language 6

understanding. Subjective Bayesian models have been used in expert

systems. In particular, Shortliffe, and Buchanan [15) have devised a

method for incremental accrual of classification confidence which is based

on confirmation theory. The theory assumes that one can formulate

approximations for a priori and conditional probabilities by using them to

determine measures of "belief" and "disbelief". These belief measures are

in turn used to define measures of confidence and rules for incrementally

updating both the belief and confidence measures (see Figure 7). 0

The belief and disbelief measures as they are implemented in expert

systems, are not spatial adaptive. That is, once the evidence for belief
is accrued, its significance never changes regardless of the outcome of S

other spatially located sensors. Honeywell is extending the belief and
confidence measures to incorporte the incremental evidence provided by the

distributed sensors. Such a framework would have the potential for
providing a unified inferencing framework that can work with partial

representations and provide direction for rederiving the sensor-%.erived

representation.

Sensor-Derived Representation (SRD) - At every step, the semantic net

comparator produces I ntormati on that validates or i nval I dates previous

evidence obtained from the sensors. The sensor-derived representation, as

a component in the distributed sensor target recognition system, maintains
and updates the values of confidence measure for each of the possible

targets, e.g., truck, tank, jeep, etc. To accomplish this task the SDR
makes a copy of the model-based representations from the knowledge base

for each of the candidate targets. Figure 6 depicts the initial state of

the sensor-derived representation. The graphs initially contain zero

confidence measures for all the targets and their components. As the

interence engine obtains information from the 2-D views it builds or



accrues evidence for each of the target graphs. For example, Figure 8
displays the graph for a tank with a total confidence measure of 0.492.

Table 1 is an example of how the SDR updates the confidence measures as

the 2-D views are analyzed. The distributed sensor system arrives at a
specific target indentification whenever the target's confidence measure

exceeds a suitable threshold or it exhausts the available sequence of 2-D

views available, in which case It chooses the target with the highest

confidence measure and provides suitable warnings. 0

The sensor-derived representation evolves as more information about the

target(s) is obtained by the different images or derived by the inference

engine. Honeywell's unique approach to symbolic Information fusion Is

based on coordinating, updating, and validating the attributes of targets

to achieve a parsimonious representation. Redundancies and conflicts are

resolved by the inference engine at the fusion level.

, _ _ •



4 . CONTROL OF INFORMATION FLOW S

In a recent work C4), we explored ways In which fundamental concepts in-

artificial intelligence (AD) can be applied to image understanding UIi)

systems. These three basic areas were the use of:
1. Knowledge Representation Levels

2. Control Structures

3. Constraints (both natural and domain-specific).

The use of difference representation levels is an area that is now well
known in the IU field. Several notable researchers have developed this
concept and its application to IU systems in some detail. 116#173 This
is an area, however, where it may still be somewhat too early to attempt
to classify and clarify the numerous types of constraints available, theirP
interactions, and the ways in which they can best be incorporated into
intelligent IUl systems.

In comparison with the above two areas, the use of control structures in
image understanding systems stands out as-an area which has not yet
received strong conceptual developmento but yet is ripe for just such an
approach. For purposes of this report, we will distinguish control
structures from knowledge representation by stating that representation
levels will be used to store static knowledge at differenct levels of

* refinement throughtout the system. We can imagine looking at "snapshots"
of the contents of the different representation levels at different times
during the processing in the system. At any given moment, the contents of
a representation level essentially portray a static fonn of information
regarding the objects in a scene and their relationship with one another.

In contrast, the control structure for an IUl system will contain
inherently dynamic or process knowledge; it will be the knowledge about
how to use or operate the information in the different representation
levels In order to generate further or more refined knowledge. These
definitions, of course, have been adapted from the classical Al concepts
for IUl purposes, and thus may be somewhat different from other points of

view as a result.



The Nature of Hierarchical Systems -

The concept of a hierarchical system may be well-defined. At the outset,

hierarchical systems may be categorized as those which have the following -

features: (18)

1. There is a vertical arrangement of the subsystems.

2. The higher subsystems have the right to intervene in the actions

of the lower subsystems.

3 The effectiveness of the higher level subsystems depends on the

actual performance of the lower levels.

There are three basic views of hierarchical systems . Each of these may

be applied to any given system, although often one view may contain more S

usable information than another.

A system may be viewed as successive levels of description or

abstraction. These levels, or strata, all describe the same system, but

each description carries different information. Another hierarchical view

of a system would be based on levels of decision complexity. This view,

in which the levels will be referred to as laer, will prove quite useful

for Al applications, and so will be discussed in some depth. A final view

of systems is based on the organization of decision making units. In this

view, where the levels are referred to as echelons* the distinction is

made on the horizontal relations of units, where there should be more than

one unit on the lowest level. The layers, mentioned aboye, are

distinguished on the basis of vertical decomposition into subsystems.

These two concepts are quite similar, and will often blend together in the

discussion which will follow.

With respect to hierarchical arrangements of decision units which comprise

a system, the following categories of decision-making systems can be

recognized: single-level, single-goal; single-level, multigoal system;

and multilevel, multigoal systems. The AlI/U programs to which this

theory will be applied will fall into the latter category.

. . . . • - - • .. . . . . . . . . . . . . . . ,, m . . . . . . m = 0
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Communication between supremal and infimal units must be bidirectional.

The supremal unit can signal downward to the infimal unit, where the

signal will represent intervention. This intervention should specify

decision problems for infimal units. Infimal units should also be able to 0
signal upward to the supremal units. Generally, their signals will

represent the status of activities undertaken.

In general, the supremal units have two broad responsibilities in dealing 0

with the infimal units. The first is to instruct infimal units in how to
proceed by selecting for them the rules and procedures to be followed.

This is referred to as "selection of a coordination mode." The second

major responsibility is to influence the infimal units to change their

actions (if necessary), or to adjust the roles of Infimal units in order

to improve performance. The selection of actual intervention or use of a

control variable will be referred to simply as "coordination".

It is also necessary that units on the same level be allowed some form of

communication. The relationships between units of the same level will be

characterized the action of a units and by the response of the rest of the

system as it influences that units. This response Is referred to as an

interface Input. Supremal units deternine how Infimal units will account

for the interface input. There are five general ways in which this can be

done. Summarized below, they are:

1. Interaction Predication Coordination, in which the suremal unit

specifies the interface output. The infimal units solve their

local decision problems based on this information alone from the

other units, and must assume that it correctly represents the

known state of the system.

2. Interaction Estimation Coordination., in which the supremal unit

specifies a range of possible values which the interface inputs

may have. The infimal units treats the inputs as distriburances

which may assume any value within the given range.

3. Interaction Decounling Coordination, allows the infimal units to

treat the interface input as an additional decision variable.

They solve their decision problems as thought the value of the

interface input could be chosen independently.



4. Load-Type Coordination, is the first case in which the infimal

units actually recognize the existance of other units on their

level. The supremal unit provides the infimal units with a model

of the relationship between its action and the response of the 0

system.

5. Coalition-Type Coordination, expresses the situation in which the

infimal units not ony recognize the existance of other units on

their level, but are allowed an interaction with other units. The

form of the interaction is controlled by supremal units.

Of these approaches, the last Is the most sophisticated and comes the

closest to the organization of human hierarchical systems. However, it is

quite complex. The first three appraoches are those that would be easiest

to implement in an AI/IU application. It is worth noting, however, for

possible future reference, that the usefullness of communication between 0

infimal units depends on how the infimal problems are defined. Some

problems benefit from communication, whereas others (generally the

simplest sort) do not. Also, it can be shown that the effect of excessive

communication between units may have the same effect as the lack of

communication in leading to an overall deterioration of performance.

Complex Hierarchical Systems

It can be useful at this point to review the terminology introduced

previously to describe the levels in a hierarchical system. The concept

of strata was introduced to indicate the choice of abstraction layers that

could be used. The concept of ]jygrs refers to the vertical decomposition

of a decision problem into subproblems, and the concept eQhelons is used

when there are more than one decision units on one layer. In the previous

discussion, the concept of communication between units on the same layer

implicity referred to a multiechelon decision-making system.

It is possible that a complex problem or situation would require a complex

multilayer hierarchy to adequately represent the system. In this case,

each of the decision units in a multiechelon hierarchy may use a

multilayer approach to solve their own, local subproblems. This concept

is illustrated in Figure 10.

S
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It would also be possible to decompose a larger system into several

vertically arranged decision units. Each decision unit could be viewed as

both a multilayer hierarchy and as a multiechelon hierarchy, as is

illustrated in Figure 11. In this example, the learning and adaption

layer corresponds to an echelon with two units, and the selection layer to

an echelon of four units.

Regardless of how complex a hierarchy becomes, several features will 0

remain constant:

1. A supremal unit will always be concerned with a larger portion or

broader aspect of the overall system behavior. 0

2. The decision period of supremal unit will be longer than that of

Its infimal units.

3. The supremal units will be concerned with the slower aspects of

the overall system behavior.

4. Decisions and problems on higher levels are less structured, will P

contain more uncertainties, and will be more difficult to

formalize quantitatively.

Using MLMGHST as a control structure paradigm

After the preceeding discussion of the nature of Multi Level, Multi Goal

Hierarchical System Theory (MLMGHST), we might ask ourselves: Why should

this apply to control structure issues in AI/IU systems?

The purpose of an IU control structure is to guide the choice of

appropriate algorithms in order to achieve certain goals. The control

structure of an IU system is both goal-oriented and process oriented. It

is easy to see that in a complex system, the hierarchical ordering of
process knowledge into strategic, tactical, and operational (algorithmic)

processes could prove useful. If this is so, then the design schema

presented before could prove a useful basis for system design. Further,

the five types of interlevel communication protocols presented earlier

could prove useful, not only in designing an initial system, but also in



planning for future system development and upgrading, by successively

modifying the communication protocols into more complex structures.

That LMGHST is primarily useful for structuring control in a system,

rather than designing the representation levels or the use of constraints,

can be shown by examining each of these systems components separately.

Although the commonly suggested structrure of IU knowledge representation

levels is hierarchical, each level may be viewed as a means of structuring

the relatively static knowledge in each image (Figure 9). Algorithms are

used to pass information from one level to the next. Although there is

some possibility for using the ideas of self-organizing, learning and

adaptation, and selection levels in designing more complex representation 0

levels, it appears that the most immediate and profitable use of MLMGHST

is to apply It to control structure which contains the process knowledge

for the system. In this way, we would have to view the multilayer control

sturcture as a construct superimposed on the representation levels and S

algorithms. The algorithms or operators would be in the same plane as the

representation levels, but we would have to view the strategic and

tactical control levels as projecting out of the plane, forming a 3-D

construct.

The use of MLGHST is similarly more suited for control than for

structuring the use of constraints. There are two types of constraints

which are currently in use in AI/IU system; natural and domain-specific.

The natural constraints which are currently in use are low level (e.g.,

"surfaces tend to be continuous"), and hence are incorporated Into the

system at the algorithmic level. Higher level natural contraints are not

well evolved.

On the other hand, domain-specific constraints embody knowledge about

subjects or attributes that are likely to pertain to the image being

used. This knowledge often expresses relationships about the observable

features or regions. This is often stored in knowledge bases which are

separate from but associated with the representation levels. Often, the

use of domain-specific constraints is crucial to the success of an IU

system, but since the constraints are unique for each system, examples of

their use is defered until later. The MOLGEN system [19) is an example of

how domain-specific constraints may be used as an Integral part of the



classical expert system with hierarchically organized process knowledge or

control.

Given that MLMGHST is best suited for application to organizing the 0

control structure of a system, it is possible to further specify those
types of systems for which it can best be used. First, the system should

be sufficiently complex so that the organization of processes into

strategic, tactical and algorithmic groupings seem natural. This could 0

mean that a large number of algorithms and/or algorithm pathways
connecti ng representation level s should be avail able. A second aspect of

a sytem that would benefit from this type of control is that the system

should be designed to handle multiple (but not necessarily simultaneous)

goals. For example, an IU system for robot bin-picking would benefit from

this type of control structure if there is more than one type of part for

which it will search. An IU system for an autonomous vehicle would have

the multiple goals of needing to characterize both objects and terrain. P 0

Different types of representation could be required for the different

types of objects and the terrain, necessitating a strategic/tactical

approach to determining which of the several representation schemas should
be employed. As a third example, multisensor IU systems will need to .

determine which, among several sensors or combination of sensors, would be
most efective under different conditions, or when searching for different

types of objects. Each of these example areas present a compelling need

for designing robust control structures which are more sophisticated than p

those currently in use.

5. INVARIANT IETHODS IN IMAGE UNDERSTANDING

5.1 Object recognition and scene parametric analysis

An analysis of the effect that scene parameters have on object

recognizability is fundamental to the understanding of distributed sensor

phenomenology. Accordingly, we started out with a parametric analysis

which includes the following:

o Evaluation of the number and location of 3-D sample points which

are necessary for the discrete representation of objects and



0 Investigation of the effect of sensor aspect angle, depression

angle, range to an object and sensor angular separation on the

recognizibility of the objects.
I S

The importance of the sampling point selection of the discrete

representation of any object becomes apparent once one Is reminded that in

all the past attemps at 3-0 object recognition, assumptions have been made

about the availability of 3-0 points which completely represent an

object. These points usually are obtained arbitrarily or imposed on the

3-0 objects by projecting a rectangular mesh over their surfaces. No

attempt has been made to justify these approaches or study the effect of

point selection on the recognition of the object. I 0

The effect of the angle of separation between the sensors, aspect and

depression angles as well as object range on the recognizability of the

object has also not been addressed in the past. It is intuitively S

apparent that as the angle of separation increases, more of the object is

viewed, hence more Information is obtained for recognition. While such

Intuitive feelings are helpful, a quantitative parametric analysis is

essential for a thorough phenomenological understanding.

In order to permit a parametric analysis one needs a suitable figure of

merit of target characterization, i.e., a barometer of target
recognizability. This target attribute has to be capable of adequately

characterizing the target object. One can then deduce a parametric

analysis by studying how this attribute degrades from its ideal value as

the parameters are varied.

One such attribute which we have used Is a 3-0 moment invariant [20). In

this method, a set of functions that may be used to represent 3-D objects

Independent of size and coordinate system is derived. Knowing the proper

number of discrete points and their position on the object is a

prerequisite for this calculation, and hence the importance of a

theoretical analysis of the 3-D sampling phenomenon. The next logical
step is to determine the effect of undersampling on the calculation of 3-0

moment invariants. This undersampling can be due to the fact that based

on the sensors' geometrical location and orientation only part of object

may be "seen" and so the sample points may not "cover" the whole 3-D

0 -



target surface. Likewise, the other scene parameters may also be varied

and their effect on target recognizability analyzed y observing the 3-D

moment invariants. We now provide a brief review of the moment

invariants. S

3-D Moment Invariants - In order to recognize any 3-D object indepent of

size, position, and orientation, one must obtain measurements which convey

the invariant attributes of the object. The use of three-dimensional -

moment invariants provides an excellent representation of 3-D objects

[20].

The three-dimensional central moments of order p + q + r of a density g

(z, x2, x3), are defined as:

Spqr = X 2 x3 g(x,x 2,x 3 )dx dx 2dx 3

where, for the sake of simplicity, the centroid Is assumed to be at the

origin.

It has been shown [20) that for quadratic surfaces, which form a special

but important subset of general ternary quantics, a set consisting of two

moment variables can be derived with the following results:

J2
1 A2  where J1 1.i U200 + U0 2 0 + 1002

2u
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Analysis Procedur - For the parametric analysis, one needs to study the

variation of moment invariants from their Ideal value for each object
class, as the sensor parameters are varied, the following steps will be

taken for the analysis:

1. The object is first encoded Into a computer by using a scale model of

the object and any one of the various 3-D coordinate machine devices

that are commercially available [213.

2. In order to study the effects of 3-D sampling, in analogy with 1-0 and
2-D cases, we first select a set of suitable cut-off frequencies (since

the Fourier transform of any finite object is infinite [223) using

appropriate criteria, e.g., maximum volume criteria which leads to the
selection of the first zero crossings. This then serves as the

baseline for studying the effects of undersampling, which can be

simulated on the computer.

I 5



* 3. In order to study the effects of the scene parameters, the desired view
of the object is obtained by means of computer software such as
coummercially available MOVIE-BYU [231 which can give the desired view
of the object when ranget depression and aspect angles are specified.

4. The coordinates of the points that are viewed by the sensor are
* evaluated by changing one parameter at a time while keeping other

constant.

5. The 3-D moment invariants of the target as it is viewed by the sensors

are then calculated.

6. The moment invariant sets are then obtained for other objects under
identical goemetrical conditions.

7. A distance measure Is defined In terms of sets of moment invariants of 0

the objects as functions of the various parameters. This provides a
quantification of the objects recognizability.

To obtain a phenomenological understanding of some of the parameters that
have effects on object recognizability we will further Investigate the
following:

1. The effect of the number of sampling points and their location on the
object on the recognizability of the object,.

2. The effects of the sensors' angle of separation on the object
recognition ability*

3. The effects of the depression and azimuth angles of the sensors on the

object recognition performancet and

4. The effect of the range of the object from each sensor on the
recogni ti on performance.



5.2 Invariant Analogical Image Representation

We present a summary of an image representation that uniquely encodes the

information in a gray-scale image, decouples the effects of illumination, ,

reflectance, and angle of incidence, and is invariant, within a linear

shift, to perspective, position, orientation, and size of arbitrary planar

forms. A detailed description of our research results can be found in a

sepatrate Technical Report (11).

The challenge of the visual information problem stems from the fact that

the interpretation of a 3-D scene from a single 2-D imayo is confounded by

several dimensions of variability. Such dimensions include uncertain

perspective, positions orientation, and size, ( pure-geometric

variability) along with sensor mode, object occlusion, and non-uniform

illumination. Vision system must not only be able to sense the identity

of objects despite this variability, but they must be able to explicitly

characterize such variablility. This is so because the variability in the

image formation process (particularly that due to geometric distortion and

varying angle of incident illumination) inherently carries much of the

valuable information about the imaged scene. Consider human vision for

the moment. In spite of the complications introduced by geometric

distortion, it is precisely the "unraveling" of such distortions that

enables a human to readily perceive the three-dimensionality of any static

2-D image--be it a single face of a Necker cube, or a 15th Century

painting of Da Vinci. Indeed, humans seem capable of unraveling the

physical and geometric distortions in an image almost as precisely as the

physics and geometry of the world created in the first place.

Contrasted with the apparent ease and elegance of human visual

interpretation of scene geometry, current vision algorithms are clearly

lacking. It is becoming increasingly clear that much of the blame lies

with conventional image representations. Good image representations must

satisfy a number of requirements which seem to be mutually incompatible.
6

First, they should be simultaneously compact and complete in their

representation of gray-scale image information. Compactness is synonymous

with ease of computation and efficient use of memory. Completeness, on

the other hand, implies that, if desired, one could fully reconstruct the

original image from which the representation is derived. Secondly, image

S



S

representations must provide good intra-object clustering and Inter-object

separability independent of image distortion while at the same time

preserving information about pattern distortion. No conventional image

representation satisfies all of the above conditions. Though many •

conventional representations claim compactness, most do not make a

credible attempt to decouple information about object identity from

information about viewing geometry and illumination, nor do current

representations fully exploit the abundance of gray-scale information in

an image. In contrast, invariant "analogical" image representations

such as that advocated in this project, can satisfy the above

requi rements.

Decoupling Multiplicative Processes in Image Formation.

For the case of an ideally diffusing surface, an image can be modeled as a

product of three independent signal componets:

f(xy) - i(x,y) • r(x,y) • cos t (1)

Where i(x,y) is the illumination, r(xy) is the reflectance, and t is the

angle of incidence of the illuminating light (24). Let's assume that any

additive noise that is present has small magnitude relative to the above

three componets of the signal. Then there is a well-known and effective

method known as homomorphic filtering that allows one to individually

filter out such multiplicative signal components when certain reasonable

conditions are met. This method is briefly reviewed below.

Suppose one takes the logarithm of our function f(xy) as defined above.

There results the so-called "density image".

In f(x,y) = In i(xy) + In r (x,y) + In cos t (2)

Hence the product becomes a sum of three density componets In i, In r, and

In cos t. If these three additive density componets have Fourier spectra

which Overlap very little in their regions of significant energy, then

linear filtering can be used to extract any one of them. By taking the

exponent of the extracted componet, one obtains the corresponding

multiplicative signal component which appeared in the original expression

S



for the image f(x,y). Homomorphic filtering has been applied to enhance

imagery by selectively filtering out the slowly varying illumination

component with very impressive results (25).

The success of homomorphic filtering clearly stems from the fact that the

Fourier transform of a density image often has the effect of

"representationally" decoupling multiplicative image componets. If image

pattern recognition (rather than image filtering) could be based on such a I 0

Fourier representation, then perhaps the effects of surface reflectance,

illumination, and angle of incidence could be decoupled. This in turn

could lead to methods for form recognition that are insensitive to varying

illumination conditions. Unfortunately, as is well know, neither the

Fourier transform, nor its (phaseless) power spectrum, have proved to be

especially useful for image pattern recognition. However, there are

alternative representati ons - namely, si mul taneous spatial / spati al-

frequency representations - which, like the Fourier spectrum, can provide

the decoupling of multiplicative image density componets and, at the same

time, overcome the classical shortcomings of the Fourier spectrum as an

image representation.

Simultaneous Representations of Space and Spatial Frequency.

Vision researchers have traditionally emphasized the importance of either

the spatial or the spatial-frequency domain, but not both. This should be

contrasted with conventional representations of acoustic signals where

simultaneous time/frequency representations (e.g. the spectrogram) have

long been used. Nonetheless, vision researchers have very recently begun

to express an active interest in simultaneous spatial-spatial-frequency

image representations (26, 27, 28, 29, 30). Such representations can

provide for improved separability of information characterizing visually

relevant patterns and thqy are also compatible with the representation of

gray-scale characteristics ranging from textures to object contours (27). L
Furthermore, simultaneous spatial/spatial-frequency image representatons

can be used to decouple the effects of illumination, object reflectance,

and angle of incidence.

1 0
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The Wigner Distribution (WD).

Two sI mul taneous spatial-spatial-frequency representati ons have recently

received much attention. They are the Gabor function representation (31, 

32# 33) and the Wigner distribution (26, 27, 28, 29, 30, 34). (Note that

we are here concerned only with 4-D directionally selective

representations; this excludes, for example, Marr's 3-D DOG representation

(24) and others like it which do not have a fourth dimension covering

spatial-frequency angle. As discussed elsewhere (30) the Wigner

distribution provides higher simultaneous resolution than is possible

using the Gabor functions. In fact as discussed in (35), every

simultaneous representation ever proposed can be expressed in terms of

averages of the Wigner distribution over Its independent spatial and

spatial-frequency variables. Like the Fourier transform, the Wigner

distribution (WD) is not, in general* a computable function since this

would require the evaluation of Infinite integrals. However, just as the

Fourier transform has proved to be an elegant and convenient

transformation with which to handle many problems in the spatial-frequency

domain, the WD is an invaluable tool for problems Simultaneously involving

the spatial and spatial-frequency domains. As with the Fourier transform,

the WD can be used in practice by employing an approximation obtained via

finite integration windows. A particularly attractive approximation to

the WD, denoted as the "composite jzseudo Xigner distribution" (CPWD) has

been introduced (30).

The WD and Multiplicative Signal Component Separability

The essence of the homomorphic filtering was to transform the image

density function (i.e. the logarithm of the sensed image function) into

the spatial-frequency domain in order to decouple the image components due

to illumination, reflectance, and angle of incidence. To simplify our

calculations, we assume a two component model including only illumination

and reflectance:

f(xiy) - I(xy) r (x,y) (3)

L . .



Taking the logarithm:

In f(x,y) = In i(x,y) + In r(x,y) (4)

and computing the WD of both sides yields:

Win f(x,you,v) = Win i(X, yutv) + WIn r(X,y,u,v)

+ 2 Wln i, In r(X,yuv). (5)

where (x,y) and (u,v) specify the spatial and spatial-frequency domains,

respectively. The third component, representing the cross-Wigner

distribution (6) occurs because computing the WD involves a nonlinear

correlation operation. Nevertheless, if the auto-WD's of the functions in

i and r do not overlap substantially in space and spatial frequency, then

approximations to the cross-WD contribution will in practice contain

negligible energy. (This non-obvious fact follows from considering the

definition of the CPWD (30)). Therefore, as with the Fourier transform,

if regions of significant spectral energies of Win i and Wln r are

disjoint, then separability of the multiplicative signal components will

have been achieved. These observations generalize to the case where angle

of incidence effects are included; then the right hand side of equation

(5) would include the auto-WD of the density function of this component

along with its cross-WD's with the illumination and reflectance density

functions. The Wigner distribution, like the Fourier transform, can

therefore decouple the effects of illumination, reflectance, and angle of

incidence when the spectra of these components are mutually disjoint. We

describe in the remainder of this report how the Wigner distribution can

be employed to define a unique image representation that, in addition to

providing decoupling of multiplicative Image components, also provides

invariance to geometric distortions Introduced .by the imaging process.

Invariant Form Recognition In The Frontoparallel Plane.

As discussed earlier, good image representations should not only decouple

the effects of illumination, reflectance and angle of incidence, but they
should also allow objects to be recognized irrespective of the a priori

unknown geometric distortions introduced by the image formation process.

We begin this section by discussing only methods for obtaining invariance

0



to linear transformations of non-occluded, planar gray-scale patterns in

front parallel view. The more general problem including perspective

distortion is reviewed in (11). One particular approach for obtaining

invariance to linear transformations makes use of the complex-logarithmic S

(CL) conformal mapping. Some researchers (36,37) have advocated use of

the representation derived by CL conformally mapping the gray-scale image

function itself. Others (38,39,40) have suggested that the CL conformally

mapped Fourier power (or magnitude) spectrum should be used. In facts ,

neither representation seems entirely adequate. The former representation

(CL mapped image function) is indeed invariant, xithin a -linear hhift

(WALS-invariant), to rotation and scaling of the image about a single

image point. However, such a representation is not invariant to

translation of an image and the effects of illumination and reflectance

are not in any way decoupled from one another. The second representation

mentioned above, (Cl conformally mapped power spectrum of an image), is

strictly invariant to translation and WALS-invariant to rotation and

scaling of an image, but it does not uniquely represent an image since

Fourier phaso information is discarded. As alluded to earlier in our

discussion of multiplicative signal separability, the loss of phase

information makes Fourier spectra especially ill-suited for imagery

containing clutter or multiple objects to be recognized. Since the

WALS-invariance properties of the above-mentioned representations arise

exclusively from using the CL conformal mapping, one is naturally led to

consider whether this mapping could be used to develop considerably more

robust image representations (perhaps simultaneous spatial/spatial-

frequency representations) which are similarly WALS-invariant to rotation

and scale changes. We show in (11) that this Is possible.

To review our progress thus far, we now have an 8-dimensional

representation which is WALS-invariant to all common geometric distortions

of rigid planar forms and which, given reasonable assumptions* is also

invariant to non-uniform illumination. We briefly describe next how such

a representation can be used to actually perform Image pattern

recognition.

The memory prototype pattern characterizing some arbitrary planar form Is

just the 4-D CL conformally mapped WD of a frontoparallel view of that - 0

form, where spatial domain mapping has been performed about some arbitrary

9
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point (see Figure 12). If that same planar form is ever "seen" again, its

presence is detected by mathematically correlating the 4-D prototype with

the previously defined 8-D image representation Wln f for all linear

shifts in a 6-0 hyperspace. If the resulting 6-0 correlation function 0

exceeds threshold somewhere, then recognition is achieved. The location

of the suprathreshold peak in the 6-0 correlation space furthermore

specifies the object position (in distance-normalized coordinates) within

the object plane, the distance-normalized size, the orientation within

object plane and finally, the slant and tilt of the object plane within

which the planar form lies -- all relative to the fixation point, size,

and orientation of the pattern (in frontoparallel view) from which the
matching template was formed.

We have described an approach to invariant image pattern recognition which

utilizes an 8-dimensional analogical image representation. This
representation decouples common dimensions of variability in the image

formation process to reveal particular 4-D canonical patterns that
characterize arbitrary planar gray-scale forms invariant to imaging

geometry and scene illumination. Canonical patterns that are embedded

within the 8-0 representation can be detected by mathematically

correlating the 8-0 representation with corresponding 4-D canonical

patterns stored in visual memory. Furthermore, once a given canonical

pattern has been identified, a number of geometric attributes of the

corresponding planar objects in a scene are specified by the location of

the suprathreshold peak in the corresponding correlation function.

Work is under way to investigate the performance and computational

feasibility of the methods described in this paper. In particular, we

will be using a discretely sampled approximation to the proposed 8-D

representation. Though the amount of computation required is substantial,

combinatorial explosion is not a problem since each dimension of the 8-D

representation need only be encoded at a small sampling of discrete

points. This follows from the fact that five of the eight dimensions

correspond to finite angular axes, and the other three dimensions are

logarithmic distance axes. Furthermore, referring to the computation tree

for the 8-0 representation (Figure 13), it should be apparent that

computation of each 4-0 function found at any leaf node of the tree can be

carried out independent of all other such nodes. A leaf node

o S
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representation provides WALS-invariance to rotation and scaling about a

single point within a single object plane. Therefore, a reasonable

strategy would be to seek recognition of planar forms by sequentially

shifting "attention" from one leaf node to the next. This would eliminate S

the need to compute the entire 8-D representation in parallel. It could

also lead to efficient strategies for handling image frame sequences by

exploiting the context of earlier frames to guide an attentional

mechanism.

6. IMPACT ON STATE-OF-THE-ART

As seen in the previous sections, the Hierarchical Multisensor Image

Understanding program has resulted in the development of various concepts

and techniques which have the effect of extending the knowledge and

capabilities of image understanding systems. The most noteworthy of these

now concepts and techniques are:

o Context Indenendent Scone Sagmentation. This is a unique concept

for segmenting a scene in such a way that, unlike conventional

approaches, the procedure does not depend on specific objects on

specific object or scene models. This context-free scene

segmentation is of high significance because it removes the

limitations of traditional scene segmentation.

o Dvnamic Spatio-Temoral Knowledge Renresentation and Inferenc.

This aspect of the research investigates approaches for

representing and processing knowledge on spatial constraints among

different scene objects and their temporal changes. Specific

results are contained In the Archival Scene Model (ASM), a highly

compact data structure. ASM represents all the important scene

information such as relationship between objects in terms of

position and velocity, image-motion compensation, relative motion

of objects with respect to the image window, and background S

descri pti on.

0 Hierarchical Planning for Control of Information Flow. Automated

planning is the specification of a path through internally S

represented world states beginning at the current state and ending

S



at a goal world state. Honeywell's automated planning consists of

obtaining or deducing basic informational steps, allocation of

information processing resources, and the verification of the

internal world states with the observed real world. Honeywell's S

concept of an automated planner includes provisions to deal with

potential false information (inferred and/or acquired), parallel

goal expansion which considers resource allocation as an

additional dimension of planning, conflict resolution knowledge 9

base, and replanning mechanisms.

However, besides the development of various new concepts and techniques,

the program effort also opened many new doors in the image understanding

area by demonstrating feasibility and potential of various additional

concepts. These new areas of research we recommend further work fall

into:

1. Spatlo-temporal evidence accrual concepts and belief systems. The

objective Is to develop a goal-directed system to search spatially

(across a scene) and temporally (through a sequence of scenes) for

information that will minimize a measure of entropy in outdoor

scenes (or maximize a measure of scene explanation).

2. Modeling and representation of scene invariant multisensor
information via invariant matrices and normalization filters.

This representation captures the essential information about the

structural and perceptual invariants in the scene, regardless of

relative size and orientation, we want to extend our work in

understanding from scene synthesis to actually infer causal modil

that explain the dynamic and purpose of scene objects via AI-based

inference engines.

The results of our efforts will provide a stepping stone for the future

development of mature multisensor vision system control structures, a

framework for the development of specific multisensor systems and an

understanding of the commonalities within and between sensor domains.
Furthermore, a functional model for synergistic use of complementary and

redundant information in all levels of processes of a multisensor vision

system across sensory domains will provide investigators with a tool to

experiment and evaluate new concepts and paradigms in computer vision.

KLD0268

L. . . . . . . . . . . . . . . . . . . . . . . . . . . | m m l l l -



REFERENCES

1. D. Panda and R. Aggarwal, Image understanding Technology, January 1984.

2. T. Levitt and K. Schaper, Contect Free Region Discrimination (CRFD),

Technical Report, Artificial Intelligence/Image Understanding Section,

Honeywell Systems and Research Center, Minneapolis, MN, December 83.

3. T. Levitt, on Expert Systems for Sensor Data Understanding, Technical

Report, Artificial Intelligence/Image Undersandi ng Section Honeywell.

4. A. Maren, Application of Artificial Intelligence to Image Understandings 

Technical Report, Artificial Intelligence/Image Understanding Section,

Honeywell Systems, November 83.

5. A. Maren, Multilevel, Multigoal Hierarchiacal Systems Theory: A Control

Structure Paradigm for AIIImage Understanding Systems, Technical Report,

Artificial Intelligence/Image Understanding Section, Honeywell System, and

Research Center, Minneapolis, MN, April 84. To be presented at the SPIE

Cambridge '84 Conference on Intelligent Robots and Computer Vision,

Cambridge, MA, NOVEMBER 84.

6. 3. Budenske, A. Hierarchical Generator for non-linear Research Allocation

and Planning in Image Understanding Systems, Technical Report, Artificial

Intelligence/Image Understanding, Honeywell Systems and Research Center,

Minneapolis, MN, April 84. Presented at the Eight Annual Honeywell

International Computer Science Conference, Minneapolis, MN, May 84.

7. R. Whillock, Using Production Rules for Control of Image Understanding

Systems, Technical Report, Artificial Intelligence/Image Understanding,

Honeywell Systems and Research Center, Minneapolis, MN, April 84.

Presented at the Eight Annual Honeywell International Computer Science

Conference, Minneapolis, MN, May 84.

8. N. Marculna, a Rule-based Evidence Accruel Paradigm for Image

Understanding. To be presented at SPIE Cambridge '84 Conference on

Intelligence Robots and Computer Vision, Cambridge, MA, Novenber 84. -

. . . . . . . . . . . . . . .. . . . . . . . . .. . . . . | . . . . . . . . . . . . . . . . . . ... . . . . .



9. P. Schenker, et al, three Generations of Image Understanding
Architecture: Studies in Automatic Target Recognition System Design. To

be presented at SPIE Cambridge '84 Conference on Intelligence Robots and

Computer Vision, Cambridge, MA, Novenber 84. 0

10. F. Sadjadi, Recognition of Complex Three Dimensional Objects using 3-D

Moment Invariants. To be presented at To be presented at SPIE Cambridge

184 Conference on Intelligence Robots and Computer Vision, Cambridge, MA,

Novenber 84.

11. L. Jacobson and H. Wechsler, Invariant Analogical Image Representation and

Pattern Recognition, Technical Report, Artificial Intelligence/Image a
Understanding Section, Honeywell Systems and Research Center, Minneapolis,

MN, March 84. To be presented at SPIE Cambridge '84 Conference on

Intelligence Robots and Computer Vision, Cambridge, MA, Novenber 84.

PS
12. M. Eshera and K.S. Fu, A Similarity Measure between Attributed Relational

Graphs for Image Analysis, IEEE Transactions in Pattern Analysis and

Machine Intelligence, 1984.

13. M. Eshera and K.S. Fu, A Graph Distance Measure for Image Analysis, to

appear In IEEE Transactions on Systems, Man, and Cybernetics, 1984.

14. A Barr and E. Feigenbaum, Handbook of Artificial Intelliganca, Vol 1,

William Kauffman, Inc., 1981.

15. E. Shortliffe and G. Buchanan, A Model of Inexact Reasoning in Medicine,

Mathematical Bioscience, Vol. 23, 1975.

16. H. Barrow, and 3. Tenenbaum, Computational Vision, Proc. of IEEE, 69 (5),

May 1981, PP> 572-595.

-a 9
17. R. Brooks, Model-based Three-dimensional Interpretation of Two-dimensional

Images, IEEE Trans. on PAM, PAMI-5, March 1983, pp. 140-150.

18. R. Brooks, "Symbolic Reasoning among 3-D models and 2-0 images,"

Artificial Intelligence 17 (1981) 285-348.

S



0

19. M. Stefik, Planning with Constraints (MOLGEN: Part 1); and Planning and

Meta-Planning (MOLGEN: Part 2); Artificial Intelligence, 14 (2) (1980),

pp. 111-169.

20. F. Sadjadi and E. Hall, Three Dimensional Moment Invariants, IEEE

Transactions in Pattern Analysis and Machine Intelligence, Vol. 2, 1980.

21. M. Ohlson, System Design Considerations for Graphics Input Devices, 0

Computer, Vol. 11, 1978.

22. F. Sadjadi and E. Hall, Three Dimensional Sampling and Object Recognition,

Proceedings of IEEE Region 3 Conference, Destin, Florida, 1982.

23. Movie-BYU Program Documentation, Brigham Young University.

24. D. Mara, Vision, San Francisco: W. H. Freeman and Company (1978).

25. A. V. Oppenheim, et al., Nonlinear Filtering of Multiplied and Convolved

Signals, Proc. IEEE 56, 1264-1291 (1968).

26. R. Bamler, and H. Glunder, Coherent-optical generation of the Wigner

distribution function of real-valued 2D signals, in .E=c. 1= lt..

Optial Qg=njtjing Conf., Cambridge# Massachusetts, 117-121 (1983).

27. L. Jacobson, and H. Wechsler, The Wigner distribution as a tool for

deriving an invariant representation of 2-D images, in Proc. IEE Conf

Pattern .Bgnition And Imag ProesiLng, Las Vegas, Nevada, 218-220

(1982).

28. L. Jacobson, and H. Wechslers The Wigner distribution and its usefulness

for 2-D image procesing, In Proc. 11b., Conf. Pattern .Rcogni n

Munich, West Germany (1982).

29. L. Jacobson, and H. Wechsler, A paradigm for invariant object recognition

of brightnessm optical fow and binocular disparity images, Pattarn

Bcgniion Lettars 1, 61-68 (1982).

S



30. L. Jacobson, and H. Wechsler, The composite pseudo-Wigner distribution, in

Proc.E n= Conf. =n Acoust., Seech, ignal Processjig, Boston,
Massachusetts (1983).

31. D. Gabor, Theory of communication, j, IEi (don) 93, 429-457 (1946).

32. J. 3. Kulikowski, et al., Theory of spatial position and spatial frequency
relations in the receptive fields of simple cells in the visual cortex, I 
iol. Xhrn*Zci 43, 187-198 (1982).

33. S. arcelja, Mathematical description of the responses of simple cortical

cells, ,.U %r,, Am, 70, 1297-1300 (1980).

34. W. Wigner, On the quantum correction for thermodynamic equilibrium, Phbs-

Bay. 40, 749-759 (1932).

35. T. A. C. M. Claasen, and W. F. G. Mecklenbrauker, The Wigner distribution

- a tool for time-frequency analysis. Parts I-IL, Philips L. .Rs.. 35,
217-250, 276-300, 372-389 (1980).

36. P. S. Schenker, et al, New sensor geometries for image processing:
Computer vision In the polar exponential grid, in Proc. IM 1= Conf.

AcousticsjSpeec .ad SignlJ Prgoesng.. 1144-1148, Atlanta, Georgia
(1981).

37. E. L. Schwartz, Cortical anatomy, size invariance, and spatial frequency

analysis, Perception 10, 455-468 (1981). 4

* 0
38. 3. K. Brousil, and D. R. Smith, A threshold logic network for shape

invariance, JEU Trans . E le. .QgDuter EC-16, 818-828 (1967).

39. D. Casasent, and D. Psaltis, Position, rotation and scale invariant

optical correlation, Ap.L ODDics 15, 1795-1799 (1975).

40. P. Cavdnagh, Size and position invariance In the visual field, Perception

7, 167-177 (1978).

KL0O268

9



WAGE PRE.IITIVES PRMITIVE$ IMGS CONIFLICT DISCRIMINATED
1E i S COMBINATION 1 -1 RESOLU1TION IMAGE

Figure 1. Approach to a Region Discriminated Image

A. Original FUR Image of Part of a Power
Plant

B. Results of Four Different Operators
for Combining Primitive Region
Discrimination Cues into a Labeled -

S . Image

C. Discriminated Regions Superimposed on
the Original Image. This is the Result
of Confli~t Resolution on the Four
Labeled Images of B

Figure 2. Context Free Region Discrimination
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Figure 10. Multilayer hierarchies within decision units of
a multiectielon systmns. (18)
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FIX ATION POINT

PS
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Figure 12.(a) The "fixation point" about which CL mapping is performed when
deriving the'template; (b) The identified form whose distance-
normalized position in its object plane (a - T,) is specified
in polar coordinates by (exocosp , eMsinpO), Rnd whose distance-
normalized size and orientation,°relative to the template form, is
denoted by K. and E,, respectively.
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Picture 3. Operator 1 on full image of power plant scene.

- .

Picture 4. Operator 2 on full image of power plant scene. --
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Picture 5. Region from Picture 4.,

Picture 6. Operator 1 on same region as 5.



Picture 7. Another region from Picture 4.

A0

Picture 8. Operator 1 on same region as 7.
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Picture 9. Operator 2 on region in Picture 7.

Picture 10. Operator 2 on region in Picture 7 with
higher edge threshold.
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Picture 11. Original FLIR image of highway scene.
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Picture 12. Highway scene after noise cleaning.
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Picture 13. Operator 1 on averaged image of highway scene.

Picture 14. Operator 2 on full image of highway scene.

b._ __ n - la - ' - - • - - n m lm n h nlh . . . . . . . . . . . . . . . . h . . . . . . ' . . . .. e nnn0



---4
0

| Picture 15. A region from Picture 13.
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Picture 16. Operator 1 on same region as 15.
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Picture 17. A region from Picture 14.

Picture 18. Operator 1 on same region as 17.
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Picture 19. Another region from Picture 14.

Picture 20. Operator 1 on same region as 19.
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Picture 21. Another region from Picture 14.

.0

Picture 22. Operator 2 on same region as 21.
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Picture 23. Operator 1 on region from Picture #21.

Picture 24. Region from same segmentation as 23.
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Picture 25. Operator 1 on full image of highway scene.

Picture 26. A region from Picture 25.
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Pict re 8. O tdo r S ene ith Truc s a d T nks: Fra e 2



I-r--

Rufs 
-pt 

0

Picture 29. Outdoor Scene with Trucks and Tanks: Frame 3.
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Picture 30. Outdoor Scene with Trucks and Tanks: Frame 4.
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Picture 31. Outdoor Scene with Trucks and Tanks: Frame 5.

Picture 32. Outdoor Scene with Trucks and Tanks: Frame 6.
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